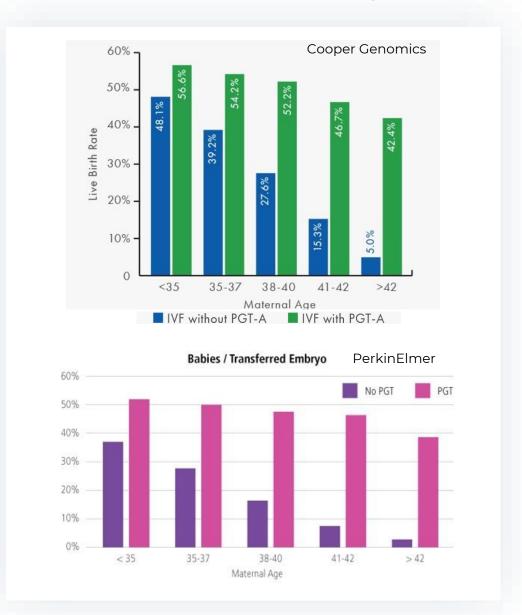
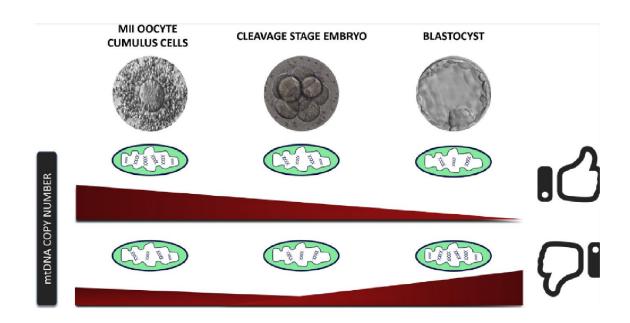
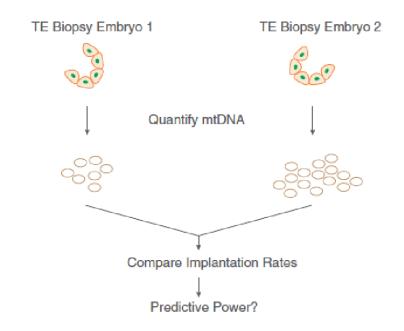
Возможность использования уровня мтДНК в образцах трофэктодермы как дополнительного критерия для предсказания исхода переноса эмбриона после ПГТ-А


РАРЧ, 2020 г.

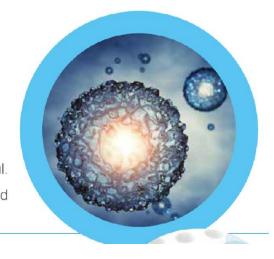
Зачем мтДНК в ПГТ-А?


Многие эуплоидные эмбрионы не имплантируются

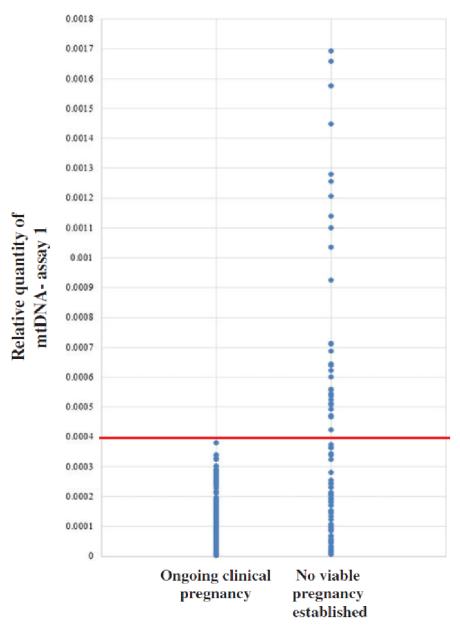


Уровень **МТДНК** отражает энергетический обмен в клетке

Cecchino et al., 2019 [1]



Viotti et al., 2017 [2]


Использование уровня мтДНК в рамках ПГТ-А

Mitochondrial DNA content as a viability indicator in human euploid embryos

- An increased amount of mtDNA in euploid embryos is related to poor implantation potential.
- MitoScore will help IVF clinics to select the euploid embryos with higher implantation potential.

MitoScore, www.igenomix.com

Ravichandran et al., 2017 [3]

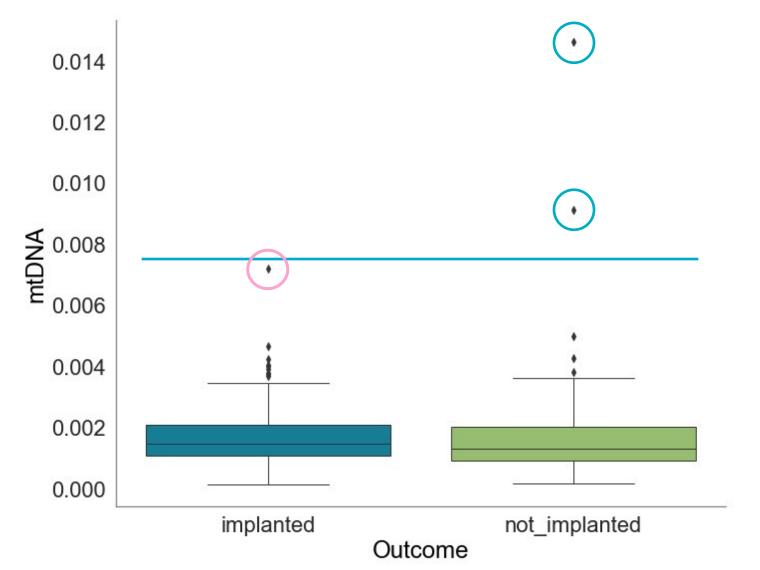
Литературные данные крайне противоречивы

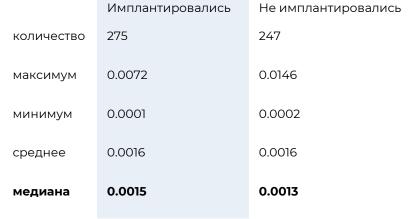
Статья	Количество образцов (ТЭ)	Метод ПГТ	мтДНК	Результат
Fragouli, 2015	340 (131 перенос)	aCGH, NGS	qPCR	исход, кариотип, возраст
Fragouli, 2017	199 переносов	NGS	qPCR	исход
Ravichandran, 2017	1505 (282 переноса)	aCGH, NGS	qPCR	исход, возраст
Diez-Juan, 2015	65 переносов	aCGH	qPCR	исход
Bayram, 2017	20 (2 эуплоидных)	NGS	NGS	жизнеспособность эмбрионов
Santos, 2018	1641	NGS	NGS	кариотип
Munck, 2019	112 (11 + 24 двойных переносов)	NGS	NGS	исход, кариотип, возраст
Boynukalin, 2020	707 переносов	NGS	NGS	исход
Victor, 2016	1396 (241 перенос)	NGS	NGS + qPCR	исход, кариотип, возраст
Treff, 2017	374 (69 двойных переносов)	qPCR	qPCR	исход, возраст
Hashimoto, 2017	34	не проводили	qPCR	стадия, возраст, показания
Klimczak, 2018	1510 (153 переноса)	NGS	NGS + qPCR	исход, возраст
Lledo, 2018	159 переносов	NGS	NGS	исход, возраст, показания
Lee, 2019	1518 (267 переносов)	NGS	NGS	исход, кариотип, возраст

Результаты лаборатории First Genetics

Наши данные

8411Всего образцов


3092 Циклов


522Проанализировано исходов

mtDNA ratio = mtDNA reads : autosomal reads

Исход переноса эмбриона и уровень мтДНК

P-value = 0.69

Статистически значимых различий НЕТ

Исход переноса эмбриона и уровень мтДНК

	Имплантировались	Не имплантировались
количество	275	247
максимум	0.0072	0.0146
минимум	0.0001	0.0002
среднее	0.0016	0.0016
медиана	0.0015	0.0013

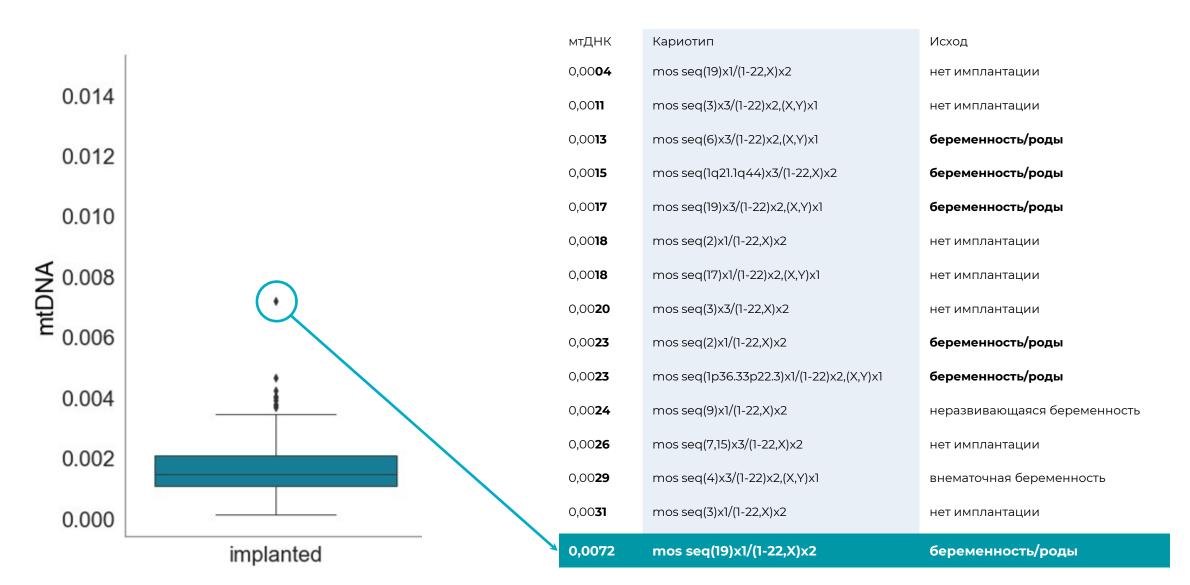
P-value = 0.69

Статистически значимых различий НЕТ

Исход переноса эмбриона и уровень мтДНК

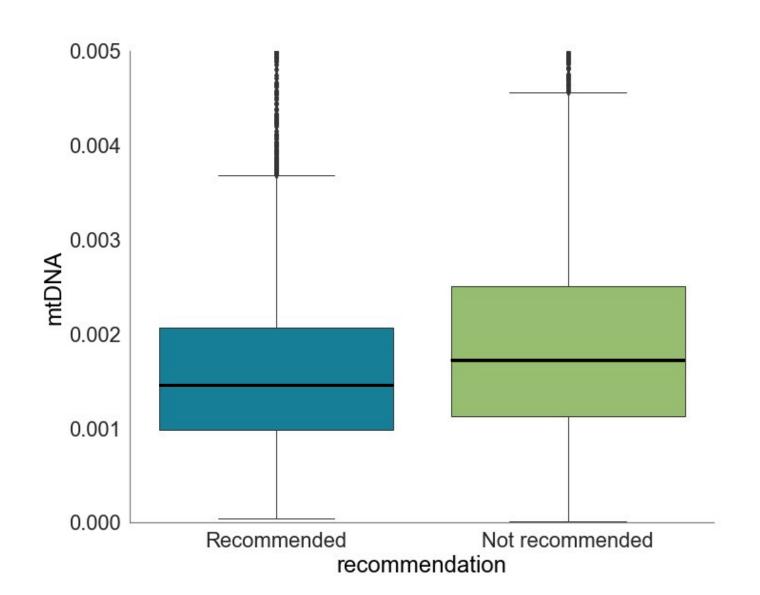
507

Эуплоидные эмбрионы


522

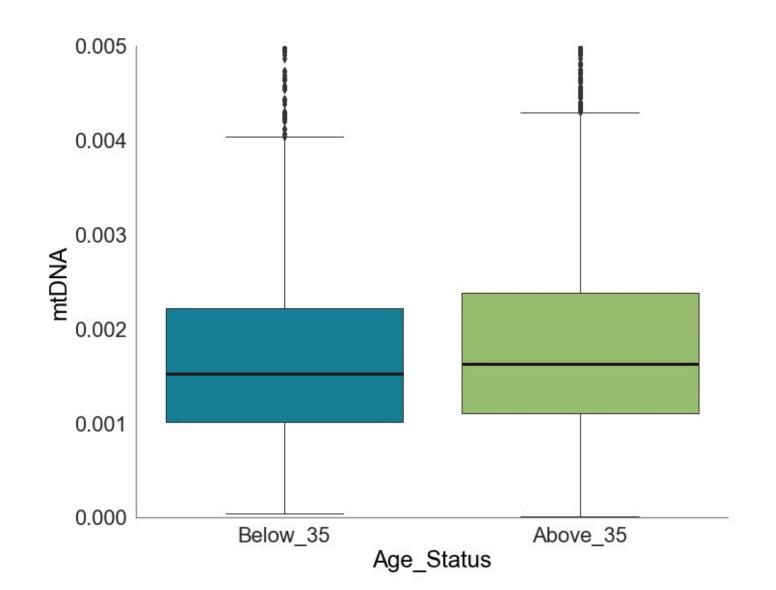
Проанализировано исходов

15


Мозаичные эмбрионы

Исход и мтДНК — 15 мозаичных эмбрионов

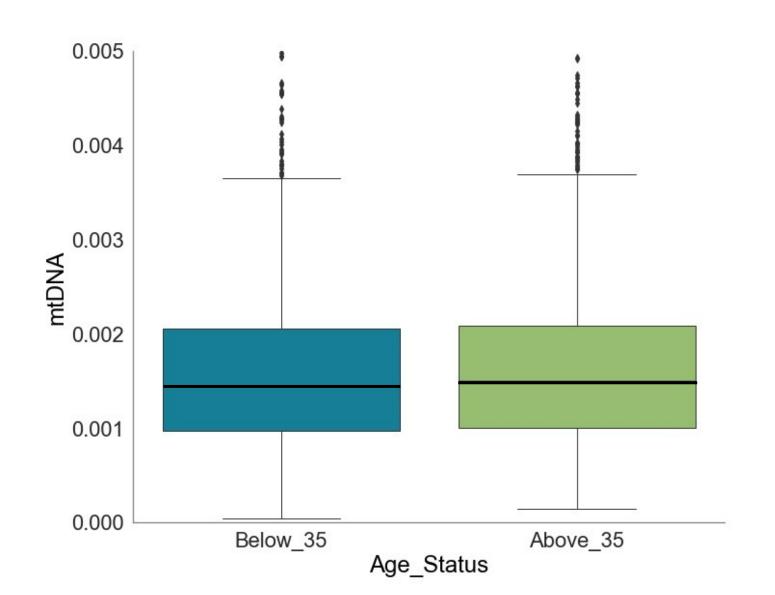
Рекомендации к переносу и мтДНК


	Рекомендованы	Не рекомендованы	
количество	3679	4020	
максимум	0.0252	0.1275	
минимум	4.8x10 ⁻⁵	1.6x10 ⁻⁵	
среднее	0.0016	0.0021	
медиана	0.0015	0.0017	

P-value < 0.0001

Статистически значимые различия ЕСТЬ

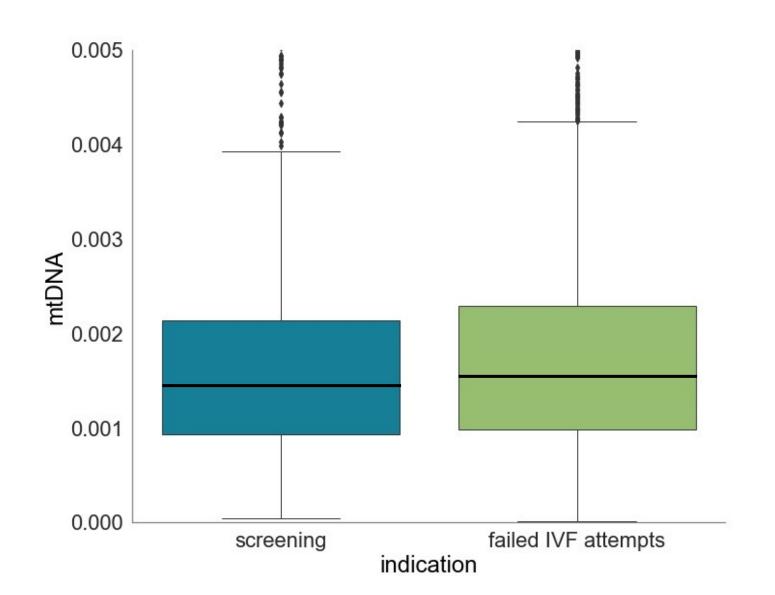
Возраст и уровень мтДНК — все эмбрионы


До 35	35 и старше
1796	4246
0.05	0.128
4.8x10 ⁻⁵	1.6x10 ⁻⁵
0.0019	0.002
0.0015	0.0016
	1796 0.05 4.8x10 ⁻⁵ 0.0019

P-value = 0.017

Статистически значимые различия ЕСТЬ

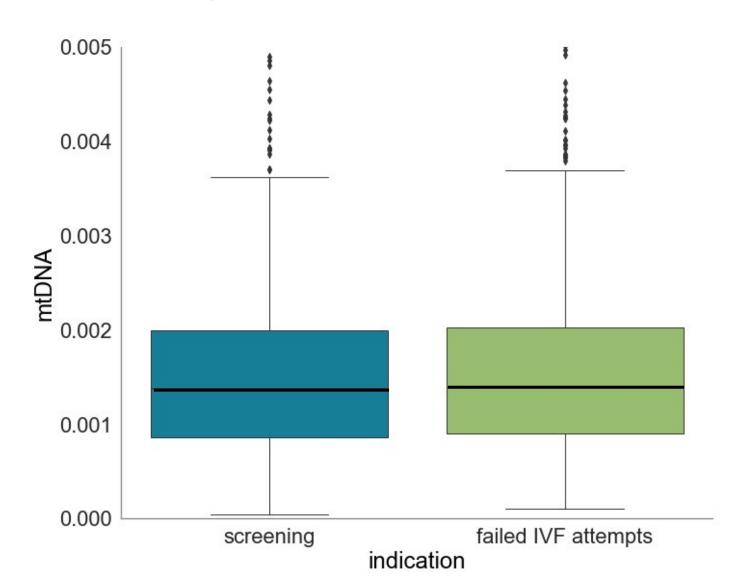
Возраст и мтДНК — только эуплоидные эмбрионы


	До 35	35 и старше
количество	1022	1389
максимум	0.012	0.025
минимум	4.8x10 ⁻⁵	1.4x10 ⁻⁴
среднее	0.0017	0.017
медиана	0.0015	0.0015

P-value = 0.33

Статистически значимых различий НЕТ

Показания и мтДНК — все эмбрионы


Скрининг	Неудачные попытки ЭКО
1445	2424
0.012	0.128
4.8x10 ⁻⁵	1.4x10 ⁻⁴
0.0017	0.002
0.00145	0.00154
	1445 0.012 4.8x10 ⁻⁵ 0.0017

P-value = 0.0008

Статистически значимые различия ЕСТЬ

Показания и мтДНК только эуплоидные эмбрионы

Скрининг	Неудачные попытки ЭКО
819	1082
0.011	0.025
4.8x10 ⁻⁵	1.1x10 ⁻⁴
0.0015	0.0016
0.0014	0.0014
	819 0.011 4.8x10 ⁻⁵ 0.0015

P-value = 0.031

Статистически значимых различий НЕТ

Заключение

Почему литературные данные противоречивы?

Статья	Количество образцов (ТЭ)	Метод ПГТ	мтДНК	Результат
Fragouli, 2015	340 (131 перенос)	aCGH, NGS	qPCR	исход, кариотип, возраст
Fragouli, 2017	199 переносов	NGS	qPCR	исход
Ravichandran, 2017	1505 (282 переноса)	aCGH, NGS	qPCR	исход, возраст
Diez-Juan, 2015	65 переносов	aCGH	qPCR	исход
Bayram, 2017	20 (2 эуплоидных)	NGS	NGS	жизнеспособность эмбрионов
Santos, 2018	1641	NGS	NGS	кариотип
Munck, 2019	112 (11 + 24 двойных переносов)	NGS	NGS	исход, кариотип, возраст
Boynukalin, 2020	707 переносов	NGS	NGS	исход
Victor, 2016	1396 (241 перенос)	NGS	NGS + qPCR	исход, кариотип, возраст
Treff, 2017	374 (69 двойных переносов)	qPCR	qPCR	исход, возраст
Hashimoto, 2017	34	не проводили	qPCR	стадия, возраст, показания

NGS

NGS

NGS

1510 (153 переноса)

1518 (267 переносов)

159 переносов

Klimczak, 2018

Lledo, 2018

Lee, 2019

исход, возраст

исход, возраст, показания

исход, кариотип, возраст

NGS + qPCR

NGS

NGS

Почему литературные данные противоречивы?

Статья	Количество образцов (ТЭ)	Метод ПГТ	мтДНК	Результат
Fragouli, 2015	36 % анеуплоидных	aCGH, NGS	qPCR	исход, кариотип, возраст
Fragouli, 2017	199 переносов	NGS	qPCR	исход
Ravichandran, 2017	1505 (282 переноса)	aCGH, NGS	qPCR	исход, возраст
Diez-Juan, 2015	65 переносов	aCGH	qPCR	исход
Bayram, 2017	20 (2 эуплоидных)	NGS	NGS	жизнеспособность эмбрионов
Santos, 2018	1641	NGS	NGS	кариотип
Munck, 2019	45,5 % анеуплоидных	NGS	NGS	исход, кариотип, возраст
Boynukalin, 2020	707 переносов	NGS	NGS	исход
Victor, 2016	44,5 % анеуплоидных	NGS	NGS + qPCR	исход, кариотип, возраст
Treff, 2017	374 (69 двойных переносов)	qPCR	qPCR	исход, возраст
Hashimoto, 2017	34	не проводили	qPCR	стадия, возраст, показания
Klimczak, 2018	52,5 % анеуплоидных	NGS	NGS + qPCR	исход, возраст
Lledo, 2018	159 переносов	NGS	NGS	исход, возраст, показания
Lee, 2019	60,3 % анеуплоидных	NGS	NGS	исход, кариотип, возраст

Выводы

Увеличение уровня мтДНК в клетках анеуплоидных эмбрионов позволяет предполагать, что этот показатель действительно может отражать нарушение внутриклеточных процессов.

Наши данные говорят об **отсутствии взаимосвязи** между уровнем мтДНК в клетках биопсии трофэктодермы и способностью эуплоидного эмбриона к имплантации.

Использование уровня мтДНК на текущий момент в клинических целях **нецелесообразно**.

Можно предположить две причины расхождения литературных данных:

- 1. Небольшие размеры выборки не позволяют анализировать различные параметры независимо друг от друга.
- 2. С учетом различного процента анеуплоидных эмбрионов, могли иметь место некорректная интерпретация результатов ПГТ-А, которая могла вызвать неправильное распределение образцов в ту или иную группу.

Список литературы

- 1. Cecchino, G. N. & Garcia-Velasco, J. A. Mitochondrial DNA copy number as a predictor of embryo viability. Fertil. Steril. 111, 205–211 (2019).
- Viotti, M., Victor, A. R., Zouves, C. G. & Barnes, F. L. Is mitochondrial DNA quantitation in blastocyst trophectoderm cells predictive of developmental competence and outcome in clinical IVF? J. Assist. Reprod. Genet. 34, 1581–1585 (2017).
- 3. Ravichandran, K. et al. Mitochondrial DNA quantification as a tool for embryo viability assessment: Retrospective analysis of data from single euploid blastocyst transfers. Hum. Reprod. 32, 1282-1292 (2017).
- 4. Fragouli, E. et al. Altered Levels of Mitochondrial DNA Are Associated with Female Age, Aneuploidy, and Provide an Independent Measure of Embryonic Implantation Potential. PLoS Genet. 11, 1–18 (2015).
- 5. Fragouli, E. et al. Clinical implications of mitochondrial DNA quantification on pregnancy outcomes: A blinded prospective non-selection study. Hum. Reprod. 32, 2340–2347 (2017).
- Diez-Juan, A. et al. Mitochondrial DNA content as a viability score in human euploid embryos: Less is better. Fertil. Steril. 104, 534-541.e1 (2015).
- 7. Bayram, A. et al. What Drives Embryo Development? Chromosomal Normality or Mitochondria? Case Rep. Genet. 2017, 1–4 (2017).
- 8. de los Santos, M. J. et al. Variables associated with mitochondrial copy number in human blastocysts: what can we learn from trophectoderm biopsies? Fertil. Steril. 109, 110-117 (2018).
- 9. De Munck, N. et al. mtDNA dynamics between cleavage-stage embryos and blastocysts. J. Assist. Reprod. Genet. 36, 1867–1875 (2019).
- 10. Boynukalin, F. K. et al. Parameters impacting the live birth rate per transfer after frozen single euploid blastocyst transfer. PLoS One 15, 1–15 (2020).
- 11. Victor, A. R. et al. Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil. Steril. 107, 34-42.e3 (2017).
- 12. Treff, N. R. et al. Levels of trophectoderm mitochondrial DNA do not predict the reproductive potential of sibling embryos. Hum. Reprod. 32, 954–962 (2017).
- 13. Hashimoto, S. et al. Quantitative and qualitative changes of mitochondria in human preimplantation embryos. J. Assist. Reprod. Genet. 34, 573–580 (2017).
- 14. Klimczak, A. M. et al. Embryonal mitochondrial dna: Relationship to embryo quality and transfer outcomes. J. Assist. Reprod. Genet. 35, 871–877 (2018).
- 15. Lledo, B. et al. Comprehensive mitochondrial DNA analysis and IVF outcome. Hum. Reprod. Open 2018, 1–9 (2018).
- 16. Lee, Y. X., Chen, C. H., Lin, S. Y., Lin, Y. H. & Tzeng, C. R. Adjusted mitochondrial DNA quantification in human embryos may not be applicable as a biomarker of implantation potential. J. Assist. Reprod. Genet. 36, 1855–1865 (2019).

Спасибо за внимание!

lab@f-genetics.com