Sanger sequencing
Free delivery across Russia от 16 000 ₽ Available on credit

Sanger sequencing

Sanger sequencing sequences an area of DNA of interest when the precise coordinates of the intended change in the genome are known after whole exome sequencing.

Free delivery

From anywhere in Russia

Up to 30 working days

Result sent by email within 30 working days

Accurate 99%

Up to 1000 base pairs can be «read» in 1 cycle with high accuracy

Strictly confidential

All data and results cannot be passed on to third parties

Sequencing

The DNA molecule is the carrier of genetic information in almost all living organisms. It is made up of two complementary, i.e. corresponding strands of nucleotides that form a unique sequence.

A pair of complementary nucleotides within a DNA sequence is also called a base pair, abbreviated as bp.

The human genome contains about 3 billion base pairs.

Sequencing is a method used in laboratory practice to determine the sequence of DNA.

In diagnostics, it is often used to look for changes in the structure of genes or their regulatory elements that cause disease (pathogenic mutations, variants).

Sanger sequencing

Up to 98% accuracysequences of up to 1000 nucleotide pairs can be 'read' in a single cycle with a high accuracy of up to 98%

Sanger sequencing is one of the classic sequencing methods. The method was developed in 1977 by Frederick Sanger and his colleagues. It was used by the Human Genome Project in 1990-2003 to fully decode the human genome for the first time.


Sanger sequencing is still relevant today and is a routine method both in genetic diagnosis and in research practice. It can be used to 'read' sequences of up to 1000 nucleotide pairs in a single cycle with a high accuracy of up to 98%.

The Sanger sequencing method is now fully automated. Automation makes it reliable and easy to perform, and it is the 'gold standard' of modern sequencing. With automation and increased sequencing capacity, the cost of the method has also decreased.

Medical indications

  • to confirm NGS data when pathogenic variants or variants of unknown clinical significance are detected. 
  • to establish a patient's genetic status when a relative has already been identified with a mutation and its exact position in the genome is known.

Due to the large volume of sequences analysed using NGS, some areas may not be read accurately and it is therefore recommended to confirm findings by Sanger sequencing if they are detected by NGS.

Features

The Sanger sequencing method is based on the use of dideoxynucleotides, also known as «terminator» nucleotides.

Особенности метода сенгера

In a test tube, a DNA synthesis reaction is carried out using an already existing matrix (the single-stranded genetic sequence of a particular individual), the sequence of which needs to be sequenced.

The DNA molecule is synthesised by the DNA polymerase enzyme, which, according to the matrix, inserts nucleotides one by one into the growing chain.

Among all the nucleotides, there are 1% «terminators», each of which also carries a special fluorescent tag.

Once such nucleotides are incorporated, further chain synthesis becomes impossible. Since the insertion of a labelled nucleotide into a growing DNA strand is a random event, it is equally likely to occur either at the beginning or after most of the complementary molecule has been synthesised.

As a result, a mixture of unique DNA fragments of different lengths is formed, which begin the same way, but end at different positions along the DNA strand matrix. And they end at one of four nucleotide tags.

These fragments are then separated by size using capillary electrophoresis.

The synthesised DNA fragments are separated by the electric field: the smaller the fragment, the faster it moves in the gel.

This way the fragments «line up» along the length in the capillary.

A fluorescent nucleotide at the end of each fragment is detected and the complete nucleotide sequence of the DNA sample examined is determined.

Comparison of methods

Since the invention of Sanger sequencing, the search and development of alternative methods of DNA sequencing has continued. Recently, Next Generation Sequencing (NGS) methods have become very popular. However, each technology has its own characteristics and the choice of method is usually based on the task at hand.

The Sanger sequencing method has its limitations

It can only be used to read DNA sequences of up to 1000 base pairs from one person at a time.

In addition, it is not possible to detect changes in a certain cell population when most of the sample represents a normal copy of the gene. For example, changes occur in tumour cells that cause them to grow uncontrollably. Such changes will not be present in any other cells in the body.

Sanger sequencing allows changes to be detected only if they appear in at least 15-20% of the DNA tested.

15-20%the test material must contain changes so that they can be detected by the Sanger method

Next generation sequencing methods

Allow to obtain data on longer DNA sequences (up to whole genome sequencing) and detect variants (mutations) contained in about 5% of the studied DNA. However, this is done by simultaneously reading a large number of short (100-300 bp on average for the methods most commonly used in clinical laboratories) DNA sequences, which are then combined and analysed.

The processing of such data is labour-intensive and requires a high level of expertise.

So, the accuracy of interpretation of individual sections depends on how many times that section has been 'read'.

In cases where the identified variant is suspected of being the cause of a disease, 100% certainty of a correct reading is required. Then there is confirmation of the presence of a pathogenic or opportunistic variant by the Sanger method.

NGS methods are also expensive, making it not cost-effective to analyse short sequences.

Therefore, when the exact coordinates of a suspected change in the genome are known (e.g. if a pathogenic or opportunistic variant has been detected in a close relative), whole exome sequencing is not necessary. You can simply sequence the section of DNA of interest using the Sanger method.

5%исследуемого материала должно содержать изменения, чтобы их можно было детектировать методом нового поколения (NGS)

How do I request Sanger sequencing?

1
2
Оплатите исследование на сайте
Price 16 000 ₽
3
Сдайте венозную кровь

You must give your venous blood sample (4 ml) in vials with EDTA (purple cap vial) in any laboratory in your city. Be sure to sign the vials!

4
Позвоните курьеру 8 (800) 201-74-63

The courier will pick up the kit with your blood and take it to the lab free of charge.

5
Receive the results by email

Test results will be sent to the specified e-mail address

Ask a question

The advantages at First Genetics

Specialists

Years of experience in genetics, laboratory diagnostics and bioinformatics

Confidentiality

All data is strictly confidential and cannot be passed on to third parties

Consulting

You can get an online consultation regarding the results of test

Security

Extensive control at each stage of testing

Free delivery

Free delivery of biomaterial across Russia

Charities

Email info@f-genetics.com for information

SANGER

Sanger DNA sequencing is the most accurate method of DNA nucleotide sequencing

Call us if you have any questions:
8 (800) 201 83 46